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Dynamic behaviour of complex structural systems may be modelled by a system of second
order linear ordinary di!erential equations, i.e., MwK (t)#Dw5 (t)#Sw (t)"f (t), by means of
either structural analysis for "nite degree-of-freedom systems or discretization procedures
(e.g., FE methods) for continuous systems. Here, w (t ) and f (t) are the displacement vector
and the force vector. Owing to erosion, friction, and internal damage and cracks, etc.,
a working process of a system always accompanies gradual degradation of the performance
of this system: the sti!ness of the system weakens, whereas the damping of the system
strengthens. To evaluate such degradation, the usual way is to model the evolution of
property of a system, obtain system property parameters, trace the history of motion and
loading, carry out complicated analysis and computation under prescribed initial and
boundary value conditions, and "nally derive the degraded property and responses of the
system. This traditional way, however, might be cumbersome and unsatisfactory in some
cases due to the lack of adequate experimental data and well-founded theoretical basis, etc.
Another way is to apply &&inverse'' methods, such as modal analysis methods with FFT and
a subspace identi"cation method, etc., developed in the theory of system identi"cation,
which extracts information about system properties directly from experimental input/output
measurement data and hence do not involve the foregoing traditional analysis. The latter
method, however, could not supply full information about system properties due to the
assumption of the &&black box'' viewpoint. In this work, with suitable experimental
input/output measurement data, a simple, e!ective procedure is described by which the
sti!ness matrix S and the damping matrix D may be determined in a complete, unique
manner using a subspace identi"cation method. The possibility of such a procedure arises
from the observation of the self-evident fact: the conservation of mass of any part of
a structural system implies that the mass matrix M of this system is constant and hence is
given by its initial value. The sti!ness and damping matrices S and D determined by the
proposed procedure may be used to evaluate and monitor, in a full sense, the degradation of
dynamic properties of structural systems. Further, with the information about the sti!ness
distribution of constituent elements of a structural system it is shown that it may be possible
to estimate the locations of the damaged or faulty elements in this system. An example is
given to illustrate the application of the proposed procedure.

( 2001 Academic Press
1. INTRODUCTION AND MOTIVATION

By means of either structural analysis for "nite-degree-of-freedom systems or discretization
through spatial displacement interpolation to a "nite number of variables (e.g., FE
methods) for continuous systems, dynamic behaviour of complex structural systems, such as
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frame and truss structures, machine systems, plate and shell structures, etc., may be
modelled by a system of second order linear ordinary di!erential equations (see e.g.,
references [1, 2]), i.e.,

MwK (t)#Dw5 (t)#Sw(t)"f (t). (1)

Here, w (t) and f(t) are the displacement vector and the force vector, and M, S and D are,
respectively, the mass, sti!ness and damping matrices of the system under consideration.
Let n be the number of degrees of freedom of the system. Then

w (t), f (t)3Rn]1, M, S, D3Rn]n.

Here and henceforth, Rr]s is used to signify the set of all real matrices of r rows and
s columns.

Owing to various complicated dissipative mechanisms, such as erosion, friction, and
internal damage and cracks, etc., a working process of a system always accompanies
gradual degradation of the performance of this system: the sti!ness of the system weakens,
whereas the damping of the system strengthens. Thus, after every service period, the sti!ness
and damping matrices S and D of a system will change and hence di!er from their initial
values S

0
and D

0
. To evaluate and monitor the performance of a system during its course of

service, it is important to have a practical and robust procedure to evaluate the current
values of S and D, etc.

As is done in damage mechanics and other relevant "elds, the usual way is to model the
evolution of the property of a system, obtain system property parameters, trace the history
of motion and loading, carry out complicated analysis and computation under prescribed
initial and boundary value conditions, and "nally derive the degraded property and
responses of the system of interest. This traditional way, however, might be cumbersome
and unsatisfactory in some cases due to the lack of adequate experimental data and
well-founded theoretical basis.

Another way is to use &&inverse''methods developed in the theory of system identi"cation,
which extracts information about system properties from experimental input/output
measurement data and hence do not involve the foregoing traditional analysis (see e.g.,
references [3}6]). This way is based on the following procedures.

(i) Arrange m actuator(s) at some location(s) in the structural system to generate
excitation(s) to the system. In doing so, the force vector f(t) in equation (1) will be
replaced by an input Gu(t), i.e.,

f (t)"Gu(t), (2)

where u (t)3Rm]1 is an m-input force vector, and G3Rn]m the corresponding input
location in-uence matrix.

(ii) At the same time, arrange l sensors at some locations in the structural system to
measure the output or the response of the system under the foregoing excitation or
input generated by the arranged actuator(s). The output measured by the arranged
sensors is expressible in the form

y (t)"C
d
w (t)#C

v
w5 (t)#C

a
wK (t)#D1 @u (t). (3)

In the above equation, y (t)3R l]1 is an l-sensor output vector; C
d
3Rl]n, C

v
3Rl]n and

C
a
3Rl]n are the corresponding output displacement, velocity and acceleration location
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in-uence matrices, respectively; and D1 @3Rl]m is the direct transmission matrix
corresponding to direct input/output feedthrough. If the sensors supply displacement
(velocity, acceleration) data, there will be displacement (resp. velocity, acceleration)
sensing. In these three cases, two of the matrices C

v
, C

d
and C

a
vanish respectively.

(iii) Find the triplet MM, S, DN such that the dynamic system modelled by equation (1)
exactly supplies the output data (3) measured with the input data (2).

The above procedures constitute a problem of identifying dynamic characteristics of
a second order structural system. Traditionally, methods called experimental modal
analysis, which is based on FFT (fast Fourier transformation), are used to determine mode
and mode shapes in the time-domain and frequency-domain (see e.g., references [7}10]). In
spite of their many advantages and successes, limitations and de"ciencies of these
traditional modal analysis methods in some cases have now been recognized, such as
di$culties due to systematic errors, expensive high resolution, etc. An alternative, simple,
and e!ective method, called the subspace identi"cation method for identi"cation of state
space models, was introduced in 1966 by Ho and Kalman [11], which results in a minimal
order realization of a general form of state space model (cf. equations (4) and (5) below) with
a high degree of accuracy. A comprehensive account of this method can be found in, e.g.,
reference [12]. In recent years, this method has been successfully and fruitfully used and
developed to deal with structural system identi"cation, see e.g., references [13}23], as well
as the related references therein.

However, the structural model equations identi"ed either by the modal analyses based on
FFT or by the subspace identi"cation method for state space models or by other known
identi"cation techniques, are not really the second order dynamic di!erential equations (1).
The former, while useful for some purposes of interest, are a form of equation (1) under an
unknown co-ordinate transformation and therefore could not supply the complete
information about the sti!ness and damping matrices S and D, etc. Generally, it is di$cult
to transform, in a complete and unique sense, the former into the second order structural
dynamic equations (1).

The major concern is in a full sense the evaluation of the system property matrices S and
D at any stage, which may be degraded by internal dissipative mechanisms in the structural
system in the course of its service. To identify the second order structural dynamic model (1)
in a full sense, some information about the structural system should be provided. Moreover,
the input/output measurement should be arranged in an appropriate manner such that the
obtained input/output data facilitate the present purpose. Of the two respects, the latter is
adjustable or controllable, while the former implies that the system is no longer regarded to
be fully &&black''. Although the viewpoint of &&black boxes'' in a system theory has universal
applicability for all systems, it could not lead to the identi"cation in a complete sense within
a given class of systems. The main reason is that, within a class of systems, many di!erent
systems may be chosen to match the given input/output data, as will be seen in the next section.

Indeed, for a speci"c class of systems, certain characteristics that are common to this class
may be known. For a structural system, whether discrete or continuous in space variables,
the construction of its property matrices M, S and D in the dynamic equations (1) may be
derived from structural analysis of the system or from FE discretization procedure of the
system, etc. For structural systems, a simple yet crucial observation is that the mass of every
part of a mechanical system is conservative in the course of any dynamic process
experienced by this system.s This commonly known principle of conservation of mass for
sOf course, collapses and failures of structural systems are not included, which result in the loss of structural
integrity.
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mechanical systems impliest that the mass matrix of a system in model (1) is constant and
hence given by its initial value M

0
. Accordingly, of the three structural property matrices M,

S and D, the former remains unchanged and only the latter two may change due to the
emergence of damage and cracks etc.

With the above observation and suitable input}output measurement data, it shall be
shown that the structural dynamic model (1) may be identi"ed in a full sense by utilizing
Ho}Kalman subspace identi"cation method. This makes it possible to establish an e!ective,
practical procedure for evaluating and monitoring the degraded dynamic properties of
a structural system at any stage. Moreover, with information about the construction of the
sti!ness matrix S, namely, information about the sti!ness distribution of constituent
elements of a structural system, it is possible to estimate the locations of the damaged or
faulty elements, if any, in the structural system.

The main context of this paper is arranged as follows. In section 2, a recapitulation of
subspace identi"cation method is given for future use. In section 3, with the principle of
conservation of mass a procedure is proposed by which the sti!ness and damping matrices
S and D, etc., may be determined from a complete set of input}output data. For purposes of
practical applications, usually it is not easy to measure a complete set of output data for
a model system (1) with a large number of degrees of freedom. To resolve this issue, section
4 shows how to utilize the proposed procedure to achieve the goal in the case of incomplete
output data. Section 5, with the identi"ed sti!ness matrix S and information about the
sti!ness distribution of constituent elements of a structural system, shows how to estimate
the locations of the damaged or faulty elements, if any, inside this system. An example is
given to illustrate the application of the procedure. Finally, some further relevant aspects
are pointed out in section 6.

Throughout this article, upper-case boldface letters are used to designate matrices.
In particular, boldface lower-case letters are used to represent column matrices or vectors.
In addition, I

k
is used to denote the k]k unit matrix and 0 zero matrices.

2. SUBSPACE IDENTIFICATION METHOD FOR STATE SPACE MODELS

Consider linear multi-input multi-output systems modelled by state space descriptions in
the form

x5 (t)"A1 x (t)#B1 u (t), (4)

y (t)"C1 x(t)#D1 u (t). (5)

In accordance with the terms used in system theory, x(t)3R2n]1 is a 2n-dimensional state
vector; u(t)3Rm]1 is an m-dimensional input vector; y (t)3Rl]1 is an l-dimensional output
vector; A1 3R2n]2n is a 2n]2n system matrix; B1 3R2n]m is a 2n]m control matrix;
C1 3Rl]2n is an l]2n observer matrix; and D1 3Rl]m is an l]m direct transmission matrix.

Equations (4) and (5) are known as a state space model with multi-inputs and
multi-outputs. Linear and quasi-linear ordinary di!erential equations of any given order
with input/output, including the second order di!erential equations (1) with equations (2)
and (3), may equivalently be expressed in a form of state-space model by virtue of a standard
procedure.
tA detailed account will be given in section 3.
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In theory of system identi"cation and realization, a linear dynamic system is regarded to
be a &&black box'', whose internal properties are totally unknown and hence in a fully &&black''
state. This means that there is total ignorance of any information about the system matrix
A1 , including its dimension. As a result, to "nd out the internal properties of a &&black''
system, excitations can be input to the system and then the output or response of the system
measured. Then, from the available input/output measurement data an attempt to extract
information about the internal property of the system can be made. Mathematically, given
the experimental input/output data, an attempt can be made to "nd a state space model (4)
and (5) of a minimal dimension which exactly matches the measured input/output relation.

The latter is just one of the central problems in theory of identi"cation of linear systems.
Many methods and techniques have been proposed and developed to deal with this
problem. Among them, a simple, e!ective method, called the subspace identi"cation method
and introduced by Ho and Kalman [11] (see, e.g., reference [12] for detail), has attracted
much attention and has been widely used in the recent years. Since this method is
fundamental to the attainment of the goal of this paper some notions and results of this
method are outlined as follows.

Integrating equation (4) over (0, t) produces the state vector

x (t)"eA1 tx(0)#P
t

0

eA1 (t~q)B1 u (q) dq, t*0. (6)

Then, equation (5) yields the output vector

y (t)"C1 eA1 tx (0)#D1 u(t)#P
t

0

C1 eA1 (t~q)B1 u (q) dq, t*0. (7)

Now, consider the discrete-time series

t
i
"iDt, i"0, 1, 2, 3,2, (8)

where Dt is a constant time increment. Let

A"eA1 Dt, B"AP
Dt

0

e~A1 qdqBB1 . (9)

Observing that the value of the input u (q) over each small interval q3(t
i
, t

i`1
) may be

regarded to be constant and hence given by u (t
i
) gives

y (t
k
)"C1 eA1 tkx (0)#D1 u (t

k
)#

k~1
+
i/0

Y(k!i)u(t
i
), (10)

where

Y(k!i)"C1 A(k~i)B3Rl]m. (11)

Compared with the closed-form solution (7), expression (10) is accurate up to a small
quantity of at least the same order of magnitude as the time increment Dt. In particular, it is
accurate for an impulse input. In fact, it may be shown that expression (10) with (9) supplies
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the solution of the output vector u (t
k
) governed by the discrete state space model

x (t
k`1

)"Ax(t
k
)#Bu(t

k
), (12)

y (t
k
)"C1 x(t

k
)#D1 u (t

k
). (13)

The above-mentioned equations are just a discretized state space model of the continuous
model (4) and (5) with reference to the discrete-time series Mt

k
N given by equation (8).

Often, MY(s)N are called Markov parameters of the system (12) and (13). Let the input u(t)
be a Dirac impulse function and let the system be initially relaxed, i.e., lim

t?0
!x (t)"0.

Then, the output y(t
k
) is exactly Y (k), and, moreover,

D1 "Y(0). (14)

It turns out (see reference [24]) that, if the system is initially relaxed, the Markov parameters
MY(s)N of the system are just the impulse response of the system corresponding to the
discrete-time series (8).

Thus, the system realization problem stated before may be reformulated as follows: given
the impulse response functions of the system, i.e., a set of the Markov parameters, MY(s)N, of
the system, "nd a triplet MA1 , B1 , C1 N, called a realization of the state space model (4)}(5), such
that

Y(s)"C1 AsB, s"0, 1, 2, 3,2 (15)

with equation (9). Evidently, A1 and B1 are obtainable from (9), whenever A and B are
available.

The subspace identi"cation method provides a systematic approach to model order
determination for a given accuracy, and the derivation of the discrete state space model.
Now a standard algorithm based on this method is available, known as Eigensystem
Realization Algorithm (ERA) (see e.g., references [13}15, 18, 17]. The key procedure of this
technique is in using the discrete-time shift of the Markov parameters to form the following
Hankel matrix:

H
pq

(s)"

Y(s#1) Y(s#2) 2 Y (s#q)

Y(s#2) Y(s#3) 2 Y(s#q#1)

) ) ) )

) ) ) )

) ) ) )

Y(s#p) Y(s#p#1) 2 Y(s#p#q!1)

(16)

Then, computing a singular value decomposition of H
pq

(0) and truncating the series
following the 2n largest singular values gives

H
pq

(0)+PRQT, (17)

where R3R2n]2n is the diagonal matrix whose diagonal elements are the "rst 2n singular
values of H

pq
(0) in the descending order; and P3Rpl]2n and Q3Rqm]2n.
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Thus, a discrete-time realization of the continuous state space model (4) and (5) is given
by

A"JR~1PTH
pq

(1)QJR~1, (18)

B"JRQT C
I
m
0 D , (19)

C1 "[I
l
0]PJR , (20)

D1 "Y(0). (21)

In the above-mentioned equations, the "rst 0 is the (qm!m)]m zero matrix, while the
second 0 is the l](pl!l ) zero matrix. Since these facts are easily derived from the matrix
multiplications involved here and in similar cases later on, there is no distinction between
such zero matrices and they are simply denoted by the same symbol 0.

However, the realization given by equations (18)}(21) is not unique. It is merely one
among an in"nite number of equivalent realizations for the given data. In fact, for any given
non-singular matrix R3R2n]2n, the triplet MR~1AR, R~1B, C1 RN is also an equivalent
realization. This implies that from the input}output data, the ERA based on the
Ho}Kalman subspace identi"cation method can identify a system up to only within
a non-singular co-ordinate transformation and hence cannot extract full information about
the system matrix A1 . Further developments will be considered in the succeeding sections.

3. DETERMINATION OF STIFFNESS AND DAMPING MATRICES

Now the second order linear dynamic model (1) for structural systems is of concern.
Introducing the state vector x (t) and the phase velocity vector x5 (t) by

x (t)"C
w (t)

w5 (t)D , x5 (t)"C
w5 (t)
wK (t)D , (22)

Equation (1) is transformed with equations (2) and (3) to the equivalent state space form (4)
and (5), with

A1 "C
0

!M~1S

I
n

!M~1DD , (23)

B1 "C
0

M~1GD , (24)

C1 "[C
d

C
v
]!C

a
M~1[S D]. (25)

Let the actuator arranged in the structural system input an impulse excitation to the
structural system. Then the output data recorded by the sensors arranged in the structural
system supply the Markov parameters MY(s)N of the system with reference to a discrete-time
series Mt

s
N given by equation (8). Thus, the ERA based upon Ho}Kalman subspace
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identi"cation method furnishes a realization of the structural system through equations
(16)}(21).

As has been indicated at the end of the last section, such a realization is not unique and
hence could not determine the system matrix A1 in a full sense. In fact, only the eigenvalues of
A1 and mode shapes are identi"ed through the ERA. Although the former contain important
information about the dynamic properties of the structural system, comprehensive
information about the sti!ness and damping matrices could not be determined, which is
crucial to a complete understanding of the system properties. It seems that this issue is
inextricably related with the black box viewpoint. With the assumption of the latter, any
further information about the internal structure of the system is not used, which may be
necessary for a proper identi"cation of the system property.

As far as all systems in a general sense are concerned, it seems to be meaningless to
prescribe in advance any information about internal structures of the systems, since
generality means being unconditional. For some speci"c class of systems, however, useful
information could be known. That is the case for structural systems modelled by equation
(1). As has been mentioned earlier, the principle of conservation of mass implies that during
every dynamic process the mass matrix M of a structural system is constant and hence is
given by its initial value M

0
. In fact, a discrete "nite-degree-of-freedom structural system is

formed by certain constituent elements. On the other hand, in a sense of approximation,
a continuous structural system may be modelled by a discrete system which is also formed
by certain constituent elements, viz., "nite elements, via an FE discretization programme
(see e.g., references [1, 2]). For any given discrete structural system in either of the latter two
senses, the mass matrix of each constituent element, denoted by M(e), is determined by the
mass of this element as well as certain characteristic length(s) (e.g., the length of a bar or
a rod or a beam, the diameter of a disc or a sphere, the length and width of a plate, etc.) of
this element, the latter being associated with the mass moment of inertia of this element and
choices of generalized co-ordinates, etc. (see e.g., references [10, 25]). Within the scope of the
applicability of the model equation (1), i.e., linearization and small deformation, the changes
of the characteristic lengths of a constituent element are negligible and they may be treated
as being constant. Moreover, the mass matrix of the model equation (1) is derived by
assembling the mass matrices of all the constituent elements, i.e., by the operation of adding
the coe$cients of the element mass matrices into the proper locations in the aggregate mass
matrix M. Let each element mass matrix M(e) be expressed in terms of the aggregate nodal
displacement vector. Then

M"+
e

M(e).

Here, +
e
means the summation for the constituent elements. Consequently, from the above

facts and the conservation of mass it is deduced that the foregoing fact concerning the mass
matrix M of equation (1) is true.

With the above-mentioned self-evident fact and suitable output data, in what follows, it
will be shown that the sti!ness and damping matrices may be uniquely determined.

First, transform the structural dynamic system (1) with input (2) and output (3) to the
multi-input multi-output state space model (4) and (5), where the matrices A1 , B1 and C1 are of
the forms given by equations (23)}(25). Then, given the Markov parameters (15) with (9),
a realization A1 @3R2n]2n, B1 @3R2n]m and C1 @3Rl]2n can be determined by means of the
ERA based on Ho}Kalman subspace identi"cation method as shown above.

Since the foregoing realization merely provides a form of the state space model (4) and (5)
relative to an unknown transformed co-ordinate system, the structures of the matrices A1 @
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and B1 @ and C1 @, unless by chance, cannot be the same as those of their respective counterparts
given by equations (23)} (25). The main idea of the subsequent development is the attempt
to "nd a non-singular transformation R3R2n]2n such that the transformed matrices
RA1 R~1 and RB1 and C1 R~1 are exactly those given by equations (23)} (25), i.e.,

RA1 @R~1"A1 "C
0

!M~1S

I
n

!M~1DD , (26)

RB1 @"B1 "C
0

M~1GD , (27)

C1 @R~1"C1 "[C
d

C
v
]!C

a
M~1[S D]. (28)

Let

A1 @"C
A1 @

1
A1 @

2

A1 @
3

A1 @
4
D , B1 @"C

B1 @
1

B1 @
2
D , C1 @"[C1 @

1
C1 @

2
] (29)

and

R"C
X

1
X

2

X
3

X
4
D . (30)

In the above, the block matrices are of the properties A1 @
i
, X

i
3Rn]n, B1 @

j
3Rn]m and C1 @

j
3Rl]n,

with i"1, 2, 3, 4 and j"1, 2.
Then, using the above partitioned forms and the fact that

M"M
0
, (31)

and noting that equations (26) and (28) may be recast in the forms

RA1 @"A1 R, C1 @"([C
d

C
v
]!C

a
M~1

0
[S D])R,

the following equations are derived from equations (26)}(30):

X
2
"X

1
A1 @

1
#X

3
A1 @

2
,

X
4
"X

1
A1 @

3
#X

3
A1 @

4
,H i.e. [X

2
X

4
]"[X

1
X

3
]A1 @, (32)

X
2
A1 @

1
#X

4
A1 @

2
"!M~1

0
SX

1
!M~1

0
DX

2
,

X
2
A1 @

3
#X

4
A1 @

4
"!M~1

0
SX

3
!M~1

0
DX

4
,H i.e. [X

2
X

4
]"!M~1

0
[S D]R, (33)

X
1
B1 @
1
#X

3
B1 @
2
"0,

X
2
B1 @
1
#X

4
B1 @
2
"M~1

0
G.H i.e. G

[X
1

X
3
]B1 @"0,

[X
2

X
4
]B1 @"M~1

0
G,

(34)

(C
d
!C

a
M~1

0
S)X

1
#(C

v
!C

a
M~1

0
D)X

2
"C1 @

1
,

(C
d
!C

a
M~1

0
S)X

3
#(C

v
!C

a
M~1

0
D)X

4
"C1 @

2
.

(35)

The main result is as follows.
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Theorem 1. ¸et the output displacement location in-uence matrix C
d
for displacement sensing

or the output velocity location in-uence matrix C
v

for velocity sensing or the output
acceleration location in-uence matrix C

a
for acceleration sensing be a non-singular n]n

matrix, and let the triplet MA1 @, B1 @, C1 @ N be a realization of the structural dynamic system (4)}(5)
with equations (23)}(25). ¹hen the sti+ness, damping and input location in-uence matrices of
this system may be completely and uniquely determined as follows:

R"C
C~1

d
C1 @

C~1
d

C1 @A1 @D , (36)

[S D]"!M
0
C~1

d
C1 @A1 @2R~1, (37)

G"M
0
C~1

d
C1 @A1 @B1 @ (38)

for displacement sensing,

R"C
C~1

v
C1 @A1 @~1

C~1
v

C1 @ D , (39)

[S D]"!M
0
C~1

v
C1 @A1 @R~1, (40)

G"M
0
C~1

v
C1 @B1 @ (41)

for velocity sensing, and

R"C
C~1

a
C1 @A1 @~2

C~1
a

C1 @A1 @~1D , (42)

[S D]"!M
0
C~1

a
C1 @R~1, (43)

G"M
0
C~1

a
C1 @A1 @~1B1 @ (44)

for acceleration sensing.

Proof. First, for displacement sensing

C
v
"C

a
"0.

Then, equation (35) gives

C
d
X

1
"C1 @

1
, C

d
X

3
"C1 @

2
,

The latter and (29)
3

lead to

C
d
[X

1
X

3
]"C1 @. (45)

Hence, if C
d

is a non-singular n]n matrix, then from equation (45)

[X
1

X
3
]"C~1

d
C1 @. (46)
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With (32)

[X
2

X
4
]"C~1

d
C1 @A1 @. (47)

Thus, equations (46) and (47) yield equation (36). From equations (33), (29)
1

and (30) it can
be inferred that

[S D]"!M
0
[X

2
X

4
]A1 @R~1. (48)

Hence, equations (47) and (48) gives equation (37). Finally, equation (38) follows from
equations (34)

2
and (47).

Second, for velocity sensing, C
d
"C

a
"0. Then, equations (35) and (29)

3
result in

C
v
[X

2
X

4
]"C1 @. (49)

Hence, if C
v

is a non-singular n]n matrix, then from equation (49)

[X
2

X
4
]"C~1

v
C1 @. (50)

Equations (32) and (50) give

[X
1

X
3
]"C~1

v
C1 @A1 @~1. (51)

Thus, equations (50) and (51) yield equation (39).
Third, for acceleration sensing, C

d
"C

v
"0. Equations (35), (29)

2
and (30) give

C
a
M~1

0
[S D]R"!C1 @. (52)

Hence, if C
a

is a non-singular n]n matrix, then from the latter equation (43) is deduced.
Then, equation (33) gives

[X
2

X
4
]"C~1

a
C1 @A1 @~1, (53)

and from equation (32)

[X
1

X
3
]"C~1

a
C1 @A1 @~2. (54)

Thus, equations (53)}(54) yield equation (42). Finally, equation (44) may be derived from
equations (34)

2
and (53).

From the above mentioned it is concluded that the expressions (36)} (38), (39)} (41) and
(42)}(44) hold, respectively, for displacement, velocity and acceleration sensing. However,
equation (34)

1
has not been used in the above process. That the three solutions given are,

separately, consistent with this equation must be veri"ed.
In fact, from equations (46), (32), (54) and (34)

1
the consistency conditions

C1 @B1 @"0 (55)

are derived for displacement sensing,

C1 @A1 ~1B1 @"0 (56)
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for velocity sensing, and

C1 @A1 @~2B1 @"0 (57)

for acceleration sensing. The respective "rst equalities of equations (26)} (28) yield

A1 @"R~1A1 R, B1 @"R~1B1 , C1 @"C1 R.

Accordingly,

C1 @B1 @"(C1 R) (R~1B1 )"C1 B1

for displacement sensing, and

C1 @A1 @~1B1 @"(C1 R) (R~1A1 ~1R) (R~1B1 )"C1 A1 ~1B1

for velocity sensing, and

C1 @A1 @~2B1 @"(C1 R) (R~1A1 ~2R) (R~1B1 )"C1 A1 ~2B1

for acceleration sensing.
From the last three expressions and the respective second equalities of equations

(26)}(28), as well as the facts that

C1 "[C
d

0]

for displacement sensing, and

C1 "[0 C
v
]

for velocity sensing, and

C1 "!C
a
M~1

0
[S D]

for acceleration sensing, it is inferred that the consistency conditions (55)}(57) may be
satis"ed for their respective cases of sensing. Indeed,

C1 @B1 @"C1 B1 "[C
d

0] C
0

GD"0

for displacement sensing. Hence equation (55) is satis"ed. Next, for velocity sensing,

C1 @A1 @B1 @"C1 A1 ~1B1 "[0 C
v
] C

Z
1

Z
2
D"C

v
Z

2
.

Here,

C
Z

1
Z

2
D"A1 ~1B1
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with Z
1
, Z

2
3Rn]m. Hence,

A1 C
Z

1
Z

2
D"B1 ,

i.e.,

C
0

!M~1
0

S

I
n

!M~1
0

DD C
Z

1
Z

2
D"C

0

GD .

From the latter, it is deduced that Z
2
"0. Thus equation (56) is satis"ed. Finally, for

acceleration sensing,

C1 @A1 @~2B1 @"C1 A1 ~2B1 "[W
1

W
2
] C

Z
1

Z
2
D"W

1
Z

1
#W

2
Z

2
.

Here [Z
1Z
2
], as is done above, is used to denote the matrix A1 ~1B1 , and [W

1
W

2
] to designate

the matrix C1 A1 ~1. Hence, from the above, Z
2
"0 and, in addition,

[W
1

W
2
]"C

a
[!M~1

0
S !M~1

0
D] C

0

!M~1
0

S

I
n

!M~1
0

DD
~1

.

Evidently, W
1
"0. Thus, equation (57) is satis"ed.

This completes the proof of Theorem 1. K

In Theorem 1, the output displacement (velocity, acceleration) location in#uence matrix
C

d
(resp., C

v
, C

a
) is assumed to be a non-singular n]n matrix. This means that the number

of sensors, i.e. l, should be the same as that of degrees of freedom, i.e., n of the model
equation (1). It has been shown that this condition is su$cient for the identi"cation of the
structural system in a full sense. This condition is also necessary. This can be deduced from
equations (45), (32) and (48) for displacement sensing, from equations (49), (32) and (48) for
velocity sensing, and from equations (52), (48) and (32) for acceleration sensing. In fact, for
displacement sensing, equation (45) supplies in"nite number of solutions for [X

1
X

3
],

whenever the rank of the matrix C
d
3Rl]n is smaller than the number of degrees of freedom,

i.e., n. Accordingly, equation (32) yields in"nite number of solutions for [X
2

X
4
], and then

equation (48) produces in"nite number of solutions for [S D]. In a similar way, it may be
shown that the same is true for velocity sensing. For acceleration sensing, if the rank of the
matrix C

a
3Rl]n is smaller than n, then equation (52) supplies an in"nite number of

M~1
0

[S D]R. Accordingly, equation (48) provides an in"nite number of [X
2

X
4
], and then

equation (32) supplies an in"nite number of [X
1

X
3
].

Since it is known from Theorem 1 that for the attainment of the goal it is adequate to set
the number of sensors the same as that of degrees of freedom of the model equation (1), the
case when the former exceeds the latter will be excluded. From this and the facts shown
above, it is concluded that the condition l"n is necessary for the uniqueness requirement.
Thus, the following result is reached.

Theorem 2. Do not let the number of sensors exceed that of degrees of freedom of the model
equation (1), i.e., l)n. ¹hen, for displacement (resp., velocity, acceleration) sensing, the
sti+ness, damping and input location in-uence matrices of the structural system modelled by



614 H. XIAO E¹ A¸.
equation (1) with n degrees of freedom may be uniquely determined by its Markov parameters
and its mass matrix M"M

0
, if and only if the displacement (resp., velocity, acceleration)

location in-uence matrix C
d

(resp., C
v
, C

a
) is a non-singular n]n matrix. Accordingly, the

number of sensors should be the same as that of degrees of freedom of the model equation (1),
i.e., l"n, and the locations of sensors should be suitably arranged.

The expressions (36)} (38), (39)} (41) and (42)}(44) furnish the sti!ness, damping and input
location in#uence matrices S, D and G, separately, for displacement and velocity and
acceleration sensing, whenever a realization MA1 @, B1 @, C@N is obtained from a set of Markov
parameters. As has been mentioned earlier, there are an in"nite number of equivalent
realizations MA1 @, B1 @, C@N, and any two of them are related to each other by a non-singular
transformation matrix pertaining to R2n]2n. Thus, it is necessary to clarify whether or not
the expressions (37) and (38), (40) and (41) and (43) and (44) are &&objective', i.e., invariant
under every non-singular transformation U3R2n]2n. This issue is treated as follows.

Let U3R2n]2n be any given non-singular transformation. In equations (36)} (44),
replacing the realization MA1 @, B1 @, C1 @N with another equivalent realization MA1 A, B1 A, C1 AN
transformed by U, i.e.

(AA, BA, C1 A)"(UA1 @U~1, UB1 @, C1 @U~1),

gives RA, SA, DA and GA. The latter are given by

RA"C
C~1

d
(C1 @U~1)

C~1
d

(C1 @U~1) (UA1 @U~1)D"RU~1,

[SA DA]"!M
0
C~1

d
(C1 @U~1) (UA1 @2U~1) (UR~1)"[S D],

GA"M
0
C~1

d
(C1 @U~1) (UA1 @U~1) (UB1 @)"G,

for displacement sensing, and

RA"C
C~1

v
(C1 @U~1) (UA1 @~1U~1)

C~1
v

(C1 @U~1) D"RU~1,

[SA DA]"!M
0
C~1

v
(C1 @U~1 ) (UA1 @U~1) (UR~1)"[S D],

GA"M
0
C~1

v
(C1 @U~1) (UB1 @ )"G,

for velocity sensing, and

RA"C
C~1

a
(C1 @U~1) (UA1 @~2U~1)

C~1
a

(C1 @U~1) (UA1 @~1U~1)D"RU~1,

[SA DA]"!M
0
C~1

a
(C1 @U~1) (UR~1)"[S D],

GA"M
0
C~1

a
(C1 @U~1) (UA1 @~1U~1) (UB1 @)"G,

for acceleration sensing.
Thus, the following result is reached.
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Corollary 3. ¹he expressions (37) and (38), (40) and (41) and (43) and (44) furnish, separately,
the same results for all possible equivalent realizations MA1 @, B1 @, C@N derived from any given set
of Markov parameters.

4. ITERATION ALGORITHM FOR THE CASE OF INCOMPLETE OUTPUT DATA

According to Theorem 2, the number of sensors should be the same as that of degrees of
freedom of the model equation (1). As a result, when the latter is very large, a very large
number of sensors are needed. A possible solution for this issue is to measure output data
with di!erent arrangements of locations of relatively fewer numbers of actuators and
sensors. The output data required may be derived from a collection of output data
measured several times. Moreover, appropriate arrangements of actuator and sensor
locations may result in optimal measurement data. In modal analysis, this has been
investigated in, e.g., references [26}29]. Use of sensors and actuators in sensing and control
of structural dynamics has been discussed or reviewed in, e.g., references [29}37].

Usually, for a system with a large number of degrees of freedom, only an incomplete set of
output data may be available, measured by a fewer number of sensors. In this case, the
procedure proposed in the last section cannot be used in a straightforward manner. To
circumvent this di$culty, in what follows, a further iteration algorithm for the case of
incomplete output data is suggested.

Consider a structural system modelled by the discretized equation (1) with n degrees of
freedom. In this structural system, l sensors are arranged at l locations. The output data
y(t)3Rl]1, measured by the l arranged sensors for an excitation generated by the arranged
actuator are described by equation (3), or, equivalently, by equations (5), (22) and (25) in
terms of state space description. Let l(n. Then, according to Theorem 2, these output data
are not su$ciently complete to determine the sti!ness and damping matrices S and D in
a unique manner. Then,

y8 (t)"C3 x(t)#D3 u (t). (58)

Once the response x (t) to the input u(t) is known, the last equation determines y8 (t).
It becomes clear that the data given by equation (58) join the output data y (t) measured

by l sensors to supply a complete set of output data by which the system property matrix
may be uniquely determined by the procedure described in the last section.

In a practical measurement, the data y(t)3Rl]1 are measured by the l arranged sensors
and hence are available, whereas the data y8 (t)3R(n~l)]1 are lacking due to the fact that it
may not be possible to arrange enough number of sensors to measure the output. If the
number of degrees of freedom, n, is very large, the number of arranged sensors, l, may be
quite smaller than n, i.e., l@n. However, to apply the procedure established in the last
section, it is necessary to have a complete set of output data, i.e., the missing data y; (t) have
to be supplemented. Towards this end, an iteration algorithm will be used. The main idea of
this algorithm is to evaluate the missing data y8 (t) and the system matrices S and D by means
of a successive approximation procedure, which is elaborated below.

First, starting with the initial values of the mass, sti!ness and damping matrices, i.e., M
0
,

S
0

and D
0
, as well as the initial input location in#uence matrix G

0
, equations (23)}(25)

provide the initial system matrix A1
0

and the initial observer matrix C1
0
, as well as the initial

control matrix B1
0
. Then, the response x

0
(t) is derived from the di!erential equation (4) with

the replacement of A1 and B1 by A1
0

and B1
0
. After that, the replacement of C< and C3 by C<

0
and

C3
0

supply the missing data y8
0
(t). The latter and the output data y(t) measured by the
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l sensors together provides an approximation of a complete set of output data, i.e.,
y
0
(t)"[y (t) y8

0
(t)]T. Then, utilizing the latter and ERA described in section 2, a realization

(A1 @
1
, B1 @

1
, C1 @

1
) may be found. Finally, by using equations (36)} (44) the new sti!ness

and damping matrices S
1

and D
1

may be obtained, as well as the input location in#uence
matrix G

1
.

The above procedures constitute the "rst step of the iteration algorithm. The second step
is to use S

1
and D

1
and G

1
as the initial values and to repeat the above procedures. As

a result, S
2
and D

2
and G

2
may be obtained. Then, follow the third step, the fourth step, etc.,

up to a step at which satisfactory values of the sti!ness and damping matrices are available.
Below is the summation of the above iteration algorithm.

A1 a"C
0 I

n
!M~1

0
Sa !M~1

0
DaD

, (59)

B1 a"C
O

M~1
0

GaD , (60)

C3 a"[0 I
n~l

]([C<
d

C<
v
]!C<

a
M~1

0
[Sa Da]), (61)

x5 a(t)"A1 axa(t)#B1 au (t), (62)

y8 a(t)"C3 axa(t)#D3 u (t), (63)

y; a (t)"C
y (t)

y8 a(t)D , (64)

(A1 @a`1
, B1 @a`1

, C1 @a`1
)"ERA(y; a (t)), (65)

(Sa`1
, Da`1

, Ga`1
)"U (A1 @a`1

, B1 @a`1
, C1 @a`1

). (66)

In the above-mentioned equations, the symbol &&ERA'' is used to represent the fact that,
given a complete set of output data, y; a(t), the eigensystem realization algorithm described in
section 2 determines a realization (A1 @a`1

, B1 @a`1
, C1 @a`1

) of the system (4) and (5). Moreover,
the symbol U means that, with the above-mentioned realization, either equations (36)}(38)
or equations (39)} (41) or equations (42)}(43) are used to determine the matrices
(Sa`1

, Da`1
, Ga`1

).
The initial mass, sti!ness and damping matrices M

0
, S

0
and D

0
, which are needed in

carrying out the above iteration algorithm, may be derived from the structural analysis of
discretized systems or from discretization methods, such as "nite element methods and
"nite di!erence methods, etc., of continuous systems. Usually, it is easier to construct the
mass and sti!ness matrices M

0
and S

0
, while in some cases it may not be easy to obtain the

damping matrix D
0
. The reason for the latter fact is mainly due to the complicated

mechanisms of dynamic dissipation in a complex structural system. However, for structural
systems with weak damping, the above iteration algorithm may be implemented by
assuming D

0
"0. This "nal result will supply all the system property matrices, including

the damping matrix D.
It may be expected that the above iteration algorithm is convergent, provided that the

current system property matrices are close to their initial values. That may be true for most
of the engineering structures before their collapses and failures.
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It is worthwhile to point out that the missing data y8 (t) may alternatively be evaluated by
introducing the so-called observers for the state space model (4) and (5), see e.g., references
[38, 39]. Extensive applications of observers in studying dynamic behaviour of the model
system (1) have been made by Schmidt [40]. A suitable chosen observer may provide a good
asymptotic estimation of the missing data y8 (t) using a linear dynamic system with lower
dimension n!l. When the number l is close to the number n, this approach is attractive.
A detailed account of this aspect is beyond our consideration. Reference may be made to
reference [40] and the relevant literature therein.

5. APPLICATION AND AN ILLUSTRATIVE EXAMPLE

In recent years, analytical and experimental techniques have been proposed and
developed to deal with the issue of damage or fault detection in structural systems, see, e.g.,
references [19, 20, 23, 40}51], as well as the references therein.

The procedure developed in the previous sections allows the evaluation and monitoring,
in a full sense, of the degradation of dynamic properties of a structural system at each stage
of its service. Speci"cally, if data for the sti!ness matrix S of a structural system at a stage are
available, it is possible to estimate whether or not the sti!ness of this system has been
appreciably weakened, and inside which elements or parts of the system the phenomenon of
sti!ness weakening occurs.

The basic consideration is schematically shown in Figure 1. Consider an initial state
without damage and faults and a state with damaged and faulty constituent elements of
a structural system modelled by equation (1). In sharp contrast to the conservation of its
mass, a constituent elementA in which appreciable damage or fault locates may su!er
considerable loss of sti!ness and strength as compared with its initial sti!ness and strength.
As a result, if the current and initial values of sti!ness (e.g., axial, #exural, torsional rigidities,
etc.) of every constituent element of a structural system modelled by equation (1) are known,
then it is possible to judge inside which constituent elements an appreciable internal
damage or fault, if any, has emerged. However, the matrix S itself merely characterizes the
global sti!ness property of the structural system as a whole. To achieve the foregoing goal, it
is necessary to have information about the distribution of sti!nesses of constituent elements
or parts of the structural system. This is indeed possible, since the global or aggregate
sti!ness matrix S of a structural system is obtained just by assembling the sti!nesses of its
constituent elements or parts. The latter is achieved simply by the operation of adding the
coe$cients of the element sti!ness matrices into the proper locations in the aggregate
sti!ness matrix. Symbolically,

S"+
e

S(e).

Here, as has been done before, +
e
means the summation of all the constituent elements or

parts of the structural system; S(e) is used to represent an element sti!ness matrix in terms of
the aggregate displacement vector.

In order to attain the goal, it is necessary to consider an &&inverse'' process of the foregoing
assembling operation: from the aggregate sti!ness matrix, derive the sti!ness of each
constituent element of the structural system. To achieve this, a simple approach is described
AThe constituent elements of a "nite-degree-of-freedom structural system may be evident. However, for
a continuous structural system, both the model equation (1) and the associated constituent elements depend on the
discretization programme adopted.



Figure 1. A structural system modelled by equation (1). (a) Initial state without damage and faults. (b) A state
with damaged or faulty constituent elements.

Figure 2. Beam with "xed ends. (a) Discretization with 10 elements. (b) Element i.
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as follows. There are some entries of the aggregate sti!ness matrix S which are precisely
some entries S(p)

ij
of some element sti!ness matrices. Determine these entries S(p)

ij
and obtain

directly the sti!nesses (e.g., axial, #exural, and torsional rigidities, etc.) of the corresponding
elements indexed by p. Then determine such entries of S, each of which is a sum of an
unknown entry S(q)

ij
and some known entries, and then obtain the sti!nesses of the

corresponding elements indexed by q. Continue this process until the sti!nesses of all the
constituent elements are derived.

As is shown in Figure 2(a), a beam of length ¸ with its two ends "xed is considered. The
beam is discretized into n

el
"10 elements with the equilength ¸/n

el
and the ends of these

elements are denoted by 0, 1,2, n
el
, as shown in Figure 2(a). The element (i!1)!i (see

Figure 2(b)) is also called element i.
Initially, it is assumed that the beam is uniform with reference to its section and material

property; hence, its initial #exural rigidity is constant, denoted by K
0
. However, after

a process of deformation and loading, the #exural rigidity of the beam may no longer be
constant due to the emergence of internal damage and cracks at some locations of the beam.
According to the discretization programme, each element i is assumed to have constant
#exural rigidity K(i). After a process of deformation and loading, if by virtue of a procedure
it is found that K(i) is noticeably di!erent from K

0
, then it is clear that, inside the element i,

noticeable degradation of rigidity has resulted due to accumulation of internal damage and
cracks, etc. Evidently, the "ner the discretization programme of the beam, the more accurate
is the estimation of the locations of the damaged or faulty parts. Each element i (see Figure
2(b)) is regarded as a Euler}Bernoulli beam element.

Let the beam be made of carbon steel. Its length is ¸"100 in and its section is a square of
side h"2 in. The mass density and the elastic modulus of carbon steel are given by

o"0)28 lb/in3, E"30]106psi.
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Then

oA¸"o¸h2"72 lb, K
0
"

Eh4

12
"4]107psi in4.

Now put 18 sensors at the nodes 1,2, 9 as well as at the respective midpoints of the
elements 1,2, 9, as is shown by the small circles in Figure 2(a). With this arrangement of
sensors, the output vector y (t) provides the de#ections or velocities or accelerations at the
18 points at which the sensors are. The relationship between the output vector y (t) and the
aggregate nodal displacement vector w"w(t) may be derived readily by using the value of
the shape function at m"0, and then the output location in#uence matrices C

d
and C

v
and

C
a
are available. The result is as follows:

C
d
"C

v
"C

a
"

0)5 !0)25
1 0 0

0)5 0)25 0)5 !0)25
0 1 0 0

) ) ) )

) ) ) )

0)5 !0)25
1 0

(67)

The above matrix is a non-singular 18]18 matrix and hence satis"es the condition given in
Theorem 2.

Put an actuator at some location in the beam. Let the actuator generate an impulse
excitation. Then, the arranged sensors record the discrete impulse responses at their
respective locations with a sample time increment Dt. Hence, a set of Markov parameters is
given by these measurement data. Find a discrete state space model realization modelled by
equations (12) and (13) and convert the result to continuous-time, as described in section 2.
Then, a realization for the state space model (4) and (5) can be obtained.

Assume that for the displacement sensing the above process supplies two realizations
MA1 @,B1 @, C1 @N and MA1 A,B1 A, C1 AN. The "rst realization results from a beam with original rigidities
K(i)"K

0
, (i"1,2, 10), while, in the second realization, the rigidity of beam element 2 was

weakened by 0)1% and that of element 6 by 50%.
For the sake of demonstration the realization matrices are produced here by reverse

transformation using an antidiagonal transformation matrix R and by taking the damping
matrix D"0.

Now expressions (36)} (38) are utilized in sequence and R, G, S and D are evaluated for
the "rst realization. The state space matrices of the beam with constant rigidity K

0
are

found and it may therefore be concluded that no damage has occurred. Then equations
(36)}(38) are applied to the matrices of the second realization. In particular, S is obtained
from equation (37). The #exural rigidities of the di!erent elements may be extracted from
S by

K(i)"
¸3

12
S
2i~3,2i

, 2(i(n!1,

K(1)"
¸3

12
S
11
!K(2), K(nel)"

¸3

16
S
2nel~2,2nel~2

!K(nel~1).

(68)
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For the rigidities

K"(40000000 39960000 40000000 40000000 40000000

20000000 40000000 40000000 40000000 40000000)T,

the values are exact up to a relative error of 1E-14. It becomes clear that the #exural rigidity
K(6) of element 6 dropped down by 50% from its initial value, i.e., appreciable damage, etc.
has occurred inside element 6. Also, the rigidity of element 2 is slightly weakened compared
to the initial state and element 2 should be inspected.

The relative accuracy of this calculation is 1E-14 and depends on the transformation
matrix R. Indeed, with a randomly generated transformation R for the "rst realization

K"(39999991 40000013 40000029 40000018 40000006

39999997 39999991 39999987 39999989 40000011)T

and for the second realization

K"(39999999 39960001 40000001 39999994 40000000

19999998 40000000 40000001 40000006 39999994)T,

i.e., the relative accuracy then was 3E-7. On the other hand, a randomly occupied damping
matrix does not seem to signi"cantly in#uence the accuracy of the results for K.

6. CONCLUDING REMARKS

With the observation of a self-evident fact, i.e., the conservation of mass of any part of
a mechanical system, in the previous sections a procedure has been developed for fully
evaluating and monitoring degradation of dynamic properties of structural systems via
a subspace identi"cation method. With the initial property matrices of a structural system
as well as suitable experimental input/output measurement data, it has been shown that it
may be possible to determine the sti!ness and damping matrices of the system in a full and
unique manner. The main results are presented by Theorems 1 and 2 and Corollary 3 in
section 3 and by the iteration algorithm in section 4. Moreover, with the aggregate sti!ness
matrix of a structural system obtained as well as with information about the sti!ness
distribution of constituent elements of this system, it may be possible to estimate whether or
not noticeable internal damage and crack, etc., has emerged inside the structural system and
inside which elements or parts of this phenomenon occurred.

The proposed procedure has the same extent of applicability as that of the model
equation (1). That means that the linear property is assumed. In some cases, non-linear
properties may not be negligible and may even play a dominant role. This di$cult aspect is
beyond the present consideration. Within the context of linearization and small
deformation, the proposed procedure may have wide applicability. Indeed, from analysis
and computation of FE methods (see e.g., references [1, 2]), it is seen that dynamic
behaviour of any structural system may be modelled by equation (1) either through
structural analysis for "nite-degree-of-freedom systems or through reasonable
discretization and linearization for continuous systems.
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For any continuous system in space variables, the model equation (1) is
a "nite-degree-of-freedom approximation to an in"nite-degree-of-freedom case through
discretization of space variables. Evidently, di!erent discretization programmes will result
in di!erent forms of model equation (1). Choosing a suitable one from them may be essential
for e!ectiveness and practicability of measurement and computation. A useful approach is
to carry out an FE discretization process which re"nes the partition of constituent element
step by step: start with a model equation (1) with fewer number of constituent elements.
Then continue with a model equation (1) with a greater number of "ner constituent
elements. Evidently, the "ner the discretization programme, the more accurate is the
evaluation of the system property and the estimation of damage or fault locations. A "ner
discretization programme results in a model equation (1) with a larger number of degrees of
freedom. As a result, the output data measured by arranged sensors may become
incomplete. In this case, the iteration algorithm developed in section 4 is essential.

On the other hand, if the arranged actuator generates a general excitation to the system
instead of an impulse input, then the output data recorded by the arranged sensors will not
supply, in a straightforward manner, a set of Markov parameters. In this case, the latter is
related to the former by expression (10) and hence may be derived from equation (10).

Input/output data for realistic measurements most often incorporate stochastic
contribution to some extent due to the in#uence of noise, etc. This raises the issue as to
whether or not the proposed procedure remains applicable and robust in the presence of
noise. It is evident that this issue is dependent upon the applicability and robustness of the
subspace identi"cation method in the noise case. Whenever a realization MA1 ,B1 , C1 N is
derived either in the noise-free case or in the noise case, the sti!ness and damping matrices
S and D are obtainable from expressions (36)} (44). It is expected that due to the sensitivity
of the identi"ed damping matrix to noisy data this will be a major point for examination.

It should be pointed out that output data may be measured by means of any other
experimental technique except using sensors. This becomes necessary in the cases when it is
not easy to arrange sensors to make measurement.

Applications of the proposed procedure to engineering structural systems with realistic
input/output measurement data will be considered in the future development.
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